Generalized simultaneous component analysis of binary and quantitative data
نویسندگان
چکیده
منابع مشابه
Generalized Multi-Linear Principal Component Analysis of Binary Tensors
Current data processing tasks often involve manipulation of multi-dimensional objects tensors. In many real world applications such as gait recognition, document analysis or graph mining (with graphs represented by adjacency tensors), the tensors can be constrained to binary values only. To the best of our knowledge at present there is no principled systematic framework for decomposition of bin...
متن کاملA Generalized Linear Model for Principal Component Analysis of Binary Data
We investigate a generalized linear model for dimensionality reduction of binary data. The model is related to principal component analysis (PCA) in the same way that logistic regression is related to linear regression. Thus we refer to the model as logistic PCA. In this paper, we derive an alternating least squares method to estimate the basis vectors and generalized linear coefficients of the...
متن کاملBinary Principal Component Analysis
Efficient and compact representation of images is a fundamental problem in computer vision. Principal Component Analysis (PCA) has been widely used for image representation and has been successfully applied to many computer vision algorithms. In this paper, we propose a method that uses Haar-like binary box functions to span a subspace which approximates the PCA subspace. The proposed method ca...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملGeneralized Fuzzy Inverse Data envelopment Analysis Models
Traditional DEA models do not deal with imprecise data and assume that the data for all inputs and outputs are known exactly. Inverse DEA models can be used to estimate inputs for a DMU when some or all outputs and efficiency level of this DMU are increased or preserved. this paper studies the inverse DEA for fuzzy data. This paper proposes generalized inverse DEA in fuzzy data envelopment anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemometrics
سال: 2020
ISSN: 0886-9383,1099-128X
DOI: 10.1002/cem.3312